a2 United States Patent

Rath et al.

US009370721B2

US 9,370,721 B2
Jun. 21, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

SYSTEMS AND METHODS FOR CREATING A
PLAYABLE VIDEO GAME FROM A STATIC
MODEL

Applicant: Pixel Press Technology, LL.C, St. Louis,
MO (US)

Robin Rath, St. Louis, MO (US); John
Haney, Wildwood, MO (US)

Inventors:

Assignee: Pixel Press Technology, LL.C, St. Louis

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Notice:

Appl. No.: 14/273,267

Filed: May 8, 2014
Prior Publication Data
US 2014/0365993 Al Dec. 11, 2014

Related U.S. Application Data

Provisional application No. 61/833,336, filed on Jun.
10, 2013, provisional application No. 61/909,836,
filed on Nov. 27, 2013.

Int. Cl1.

GO6F 9/44 (2006.01)

AG63F 13/60 (2014.01)

AG63F 13/65 (2014.01)

AG63F 137213 (2014.01)

U.S. CL

CPC ... AG63F 13/60 (2014.09); A63F 13/213

(2014.09); A63F 13/65 (2014.09)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,577,185 A * 11/1996 Tunnell et al. 345/473
5,680,534 A 10/1997 Yamato et al.
5,742,280 A * 4/1998 Ohyamaccccceene. 345/173
5,956,419 A * 9/1999 Kopecetal. ... 382/159
6,167,562 A 12/2000 Kaneko
6,175,954 B1* 1/2001 Nelsonccccccecevnen GOGF 8/34
717/105
6,677,967 B2* 1/2004 Sawano etal. 715/839
6,738,526 B1* 5/2004 Betrisey GO6T 11/203
358/1.9
6,785,418 Bl 8/2004 Barton et al.
7,092,870 B1* 82006 Chenetal.cccooenennene 704/9
7,293,261 B1* 11/2007 Anderson GOGF 8/52
717/106
7,320,120 B2* 1/2008 Rajarajan GOG6F 8/20
717/105
(Continued)
FOREIGN PATENT DOCUMENTS
CN 101807198 A * 8/2010
WO 2006/023268 A2 3/2006
OTHER PUBLICATIONS

Oswald, et al., “i.Ge: Exploring New Game Interaction Metaphors
with Interactive Projection” 2015 ACM,; [retrieved on Apr. 25,2016];

Retrieved from Internet <URL:http://dl.acm.org/citation.
cfm?id=2687910>;pp. 735-740.*
(Continued)

Primary Examiner — Xi D Chen
(74) Attorney, Agent, or Firm — Lewis Rice LLC

(57) ABSTRACT

Systems and methods for creating a playable video game, or
playable video game levels, from a model, typically a two-
dimensional work of hand-drawn art. A set of software mod-
ules processes a digital image of the static model to translate
its component elements into video game elements in a level
file, which may then be played using a game driver.

18 Claims, 23 Drawing Sheets

US 9,370,721 B2
Page 2

(56)

7,370,315
7,383,531
7,565,640

7,670,225
7,725,873

7,761,858
7,827,488
8,160,365
8,282,484
8,328,610
8,392,877

8,506,377
8,527,943

8,542,250
8,578,329
8,645,914
8,811,726

8,924,926
2005/0015746

References Cited

U.S. PATENT DOCUMENTS

Bl* 5/2008 Lovellccoeu
B2* 6/2008 Brigham,II
B2* 7/2009 Shukla ...
B2* 3/2010 Nishimura
B2* 5/2010 Shepard

B2* 7/2010 Chang
B2* 11/2010 Sitrickccooovnrnn

B2 4/2012 Campbell et al.
B2 10/2012 Toriyama

B2* 12/2012 Shimuraetal.
Bl* 3/2013 Chiluvuri
B2 8/2013 Heatherly

Bl* 9/2013 Chiluvuri
B2* 9/2013 Baseley
Bl* 11/2013 Chiluvuri
B2* 2/2014 Repenning
B2* 82014 Belhumeur et al.
B1* 12/2014 Frasercc......
Al* 1/2005 Shuklacc......

GO6F 8/33
717/106
GO6F 8/24
717/107
GO6F 8/10
717/106

......... 463/30

GO6F 8/74
717/106
GO6F 8/20
717/106

....... 715/716

........... 463/9

GO6F 9/44
717/107

GO6F 8/30
717/107

GO6T 7/0042

345/419
GO6F 8/36
717/107
GO6F 8/20
717/105

....... 382/159
....... 717/113

GO6F 8/34
717/105

2005/0045025 Al* 3/2005 Wellsetal. ... 84/615

2008/0189677 Al* 82008 Coteccoevinnn. GOG6F 8/34
717/105

2010/0232690 Al 9/2010 Kanatsu et al.

2011/0090253 Al* 42011 Goodccocoe.. GOG6F 17/289
345/633

2011/0208571 Al* 82011 Ballatineetal. 705/14.15

2012/0051601 Al 3/2012 Simske et al.

2014/0337816 Al* 11/2014 Chiluvuri ..o GOG6F 8/36
717/107

OTHER PUBLICATIONS

Gonzalez-Ochoa, et al, “From a calm puddle to a stormy ocean—
Rendering water in Uncharted”; SIGGRAPH 2012; [retrieved on
Apr. 25, 2016]; Retrieved from Internet <URL:http://dl.acm.org/ci-
tation.cfm?id=2343050>;pp. 1-1.*

Rahman, Saddik, “Mobile Pointme Based Pervasive Gaming Inter-
action with Learning Objects Annotated Physical Atlas”; 2011 IEEE;
[retrieved on Apr. 25, 2016]; Retrieved from Internet <URL:http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6012206>;pp.
1-1.*

Garaizar, et al., “Swiping fingers on a screen is not enough Dusting
off tyy blocks to build new gaming experiences through mobile
apps”; 2013 IEEE; [retrieved on Apr. 25, 2016]; Retrieved from
Internet <URL:http://ieecexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=6530116>;pp. 268-272.*

International Search Report, International Patent Application No.
PCT/US2014/041146, 11 pages, issued on Oct. 7, 2014.
International Search Report, International Patent Application No.
PCT/US2014/041146, mailed Dec. 23, 2015, 8 pages.

* cited by examiner

U.S. Patent

Jun. 21, 2016

Sheet 1 of 23

US 9,370,721 B2

]
TNy
q
e
Y " gl

]

s AL
VR
[l

iy

A
i

il

. Patent Jun. 21, 2016 Sheet 2 of 23 US 9,370,721 B2

I

90| 95

FHH

80

Ll
Ju |

:::m"m
m

ﬁ:

m
TR
R

Q:::::
Rt
IRy
]
30

mans
111

20
20

. ﬁ -
W! H H =
- T R - « &

FIG. 2

U.S. Patent

Jun. 21, 2016

Sheet 3 of 23

|S

oL

loz

log

lov

l0s

|09

0

log

o6

Is6

®o

oy

oy

US 9,370,721 B2

FIG. 3

US 9,370,721 B2

Sheet 4 of 23

Jun. 21, 2016

U.S. Patent

o
Jn

5| 10l

20]

30

40| 50 60

70 80l 20

95

FIG. 4

U.S. Patent Jun. 21,2016 Sheet 5 of 23 US 9,370,721 B2

w1 U1
— —_—
o o
N [
o o
w (o]
(=) o
D o
(=) o
wn %)
(=) o
o)} o)}
(=) o
~ -
(=) =
0 o]
o =]
Ye) \O
(=] o
te) \O
U1 ;!
») » <

FIG. 5

U.S. Patent Jun. 21,2016 Sheet 6 of 23 US 9,370,721 B2

FIG. 6

U.S. Patent Jun. 21,2016 Sheet 7 of 23 US 9,370,721 B2

) » » ¢
||
|
[9)] IU‘I
o =
N |N
(=1 =3
{
1
i
|
w (o]
< =
N o
=) =)
19 Ll
o =]
o o
o =)
~l ~J
o =]
00
= =1
© O
=1 =1
© o)
U Jln
» 8 » 8 <
| I | T |

FIG. 7

US 9,370,721 B2

Sheet 8 of 23

Jun. 21, 2016

U.S. Patent

'[eA8] noA ul sdniamod pue sajoe)sqo
a1eaId 0} ybLI 8y} UO paquasap sauljapInb sy} moj|04

e

P 3

‘doy 0) woyoq woi Buibus)eyo siow AjpAiS

-saiB0.d s1 1By |99 J00)} BAl) B UBISap 0} SI 8A1J98(00 INOA
J00}} 1X8U 8y} 0} dn aauBApE 0} JOOJ} YIBd

10 pUS 8} 1 J0JeAS|d 8} Yokal 0} 8)eald nok $ajoe1sqo
U} UI0219A0 0} Jdwiaje pue WORoq u} 1e LIe)S [|Im 0Jdy
INOA “[AR] aweb 0apiA B |0 $100)) 8AY Bulubisap a1e nop

L'0ASUONIONIISU| Y91eXS

V8 Ol

US 9,370,721 B2

Sheet 9 of 23

Jun. 21, 2016

U.S. Patent

d8 'Dld

{ »

_ 'Slled Ul 8WO00 SAnISmMOd % Sielod 31VIHD 0L
1snw selod SIHL MYHd
HEEN | Bl |
N _m._ oy |
nu. = (=
9F | beg

"Wwiojje|d 1s8.eau 8y} J0j Uonou Jo sialleg g seyidg
obue) au S sul oY) SIHLONIMYHA ‘swuopeld Bunop 31¥3HI OL

HIE "DUeY NOA S)a] d0) 8y} _ > SIeg ASYUOp
0} psyoejje urelis] SIHL Mvdad % Slid plezeH 31¥3HI OL
u._ r]
—=
"Wonoq ey} Je sdeys ey} uielay [elaus
9S0[2 0} p8au ON SIHL MvHd oHeL] V3lvada ol

"8y} MeIp 0} MOY PUE 8SN UBD NoA S8jaeISq JUaJaMIp 8y} a1e Buimoo) sy)

AHOLN3ANI 370v1S80

US 9,370,721 B2

Sheet 10 of 23

Jun. 21, 2016

U.S. Patent

salenbg G salenbg ¢ salenbg ¢

n_s_a._ez_zzzmn_ss_.wz_oz<.5n_==_.._<o=.mm_>z:ms_._Ss
— — - =

"PUIL Ul 9S8y} daay mou

10} Ing “T3AT7 InoA 158} 0} Joje| IUBYD © BARY |.NOA "OHIH
InoA Jo saljiqedes [eaisAyd prepue)s sy} aJe buimol|o) sy |
S3LLMIGVdYD S.0H3H

'sdn paads pue ‘squioq ‘1aybiy dwnl ey - op sdnJd

-mod InoA Jeym auiap 0} Jaye| suondo aaey ||NOA -

"$9|981S(0

10} 99eds pub sy} Jo || asn os ‘aoeds anjq sy} Ul

J0OJ} YoBa JO pud au} 1e noA 1o pajeald aie SI0JeAs|T .

jjuswiLiadxa 0} preyje

aq J,u0Q "91ISGOM JNO WO} Yo1ays a|dwes e peojumop

ued noA ajgnoJ} Buirey ase noA | sjdwis Buiysios

UM LielS ‘[oAd] e Bulubisap awin 1811} In0A S SIYL | «
'SO)RISIL)W ||Im noA ‘|iousd e as « :sdi]

J8 Dl

US 9,370,721 B2

Sheet 11 of 23

Jun. 21, 2016

U.S. Patent

ds oOld

areys g feld ‘ywgng ubiiseq 18] peojdn
& @ L 9
asuung buluing T @
:9WeU [oAd] — »

‘paue}s 186 0} JanaT e ajealn, %010 pue dde sy} uadp
"BIWERD pedl 10 auoyd! ay: buisn [aas] InoA yodwi o) Apeal aie noj

¢ONIHOLINS 3INOd

U.S. Patent Jun. 21,2016 Sheet 12 of 23 US 9,370,721 B2

FIG. 9

U.S. Patent Jun. 21,2016 Sheet 13 of 23 US 9,370,721 B2

1= 1=1=0
[N (N (N
° 0 r g Jr Ir |
n
L=
A

e

=g HH il

Iy CHH w8 i Tt
G S i

% Z o

N = E=iin S ' T
a~TTH] W
"E En2E i
= EASE i

J —H mass T i
F H .

[TTT T T T T T T IFT O

[T ISy T T T T T T T TTTTTTI
[T T T T T T T T T T T T T T T I T T T I T T T TANT T T T T T T TN T T T T T T

[T

[T T T T T T T T T T TP T T T T T T T T T T T T T T T I T T T T I T T

[T T T T T T T T T T T T T T T I T T T T T T T T T T T T [] Joudeekell T T T T T T T 1

HESESEE
[T T T T T T T I T T T T T T T T T T T T I T T T T T T T I T T T T T TTT T RYLTTTT TN

BT T T T T T T T T T T T T T T T IT T I DL TTI T T T T T T 1T T 147

[TTTT T NLEITTTTTIT NLETTRS

NI T T TTT TSI T ITIT S5 T2

JITTTTTT/RNTTTTTTTIARTT

[T TTT T ==

e e i I i i i i = i i 3= ==}

U.S. Patent

Jun. 21, 2016

Sheet 14 of 23

US 9,370,721 B2

L=

[
8
M

1 E

—{TT

ER===uELJN
L T T TATHT T 1T 1T 1T 1T 1

[TT T ML T T TTTT1

ipeuana:.

[18 Te

ITITTET

1 [TT T 117

[TTTTTTIT TN I T I 1 P o I

LLL T T TTTI

EEEE_ n

|||I|I
[T T pood pimi]

EEFEERDAN
P A

I|||||| ||||||||I

[TT T T el T T e T pmrmororroorreproed]

\
P A e [| e Y o

A T T T

FIG. 11

ISR E) [[et

;

sl/
8

il

Y

N
7

|

[

£
 ——

/-

*

AN

U.S. Patent Jun. 21,2016 Sheet 15 of 23 US 9,370,721 B2

US 9,370,721 B2

Sheet 16 of 23

Jun. 21, 2016

U.S. Patent

¢l DI

U.S. Patent Jun. 21,2016 Sheet 17 of 23 US 9,370,721 B2

FIG. 14

US 9,370,721 B2

Sheet 18 of 23

Jun. 21, 2016

U.S. Patent

US 9,370,721 B2

Sheet 19 of 23

Jun. 21, 2016

U.S. Patent

9T "DId

US 9,370,721 B2

Sheet 20 of 23

Jun. 21, 2016

U.S. Patent

U.S. Patent

Jun. 21, 2016 Sheet 21 of 23

1800
FORM MODEL
1802
IMAGE CAPTURE
1804
IMAGE PREPROCESSING |/
1806
RECOGNITION
1808
SEMANTICS
1810
ACCUMULATION

FIG. 18

US 9,370,721 B2

U.S. Patent Jun. 21, 2016 Sheet 22 of 23

US 9,370,721 B2

1905~

//—1901

PREPROCESSING [~—1907
RECOGNITION [~—1909
SEMANTICS I~ 1911

ACCUMULATION [~-1913
~1921

1903

1919

FIG. 19

U.S. Patent Jun. 21,2016 Sheet 23 of 23 US 9,370,721 B2

l

2000 2006
| CREATE CONTEXT GRAPH

l

2004 NO
2002 .
_ DEFAULT TO “UNKNOWN" > ANY UNKNOWN
CONTEXTS OR
»| UNRESOLVED GLYPHS?
2008
EXAMINE GLYPH < YES
2010 l 2012
_ L
No| FUNCTIONALMEANING | APPLY MEANING IN
DETERMINABLE IN =25 SEMANTIC DATA
AVAILABLE CONTEXT?
DOES GLYPH PROVIDE
—>| CONTEXT MEANING? [
~
2014
NO _>YES UPDATE CONTEXT GRAPH
~
2016 |

FIG. 20

US 9,370,721 B2

1
SYSTEMS AND METHODS FOR CREATING A
PLAYABLE VIDEO GAME FROM A STATIC
MODEL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims benefit of U.S. Provisional Patent
Application No. 61/833,336, filed Jun. 10, 2013, and U.S.
Provisional Patent Application No. 61/909,836, filed Nov. 27,
2013. The entire disclosure of both applications is incorpo-
rated herein by reference.

BACKGROUND

1. Field of the Invention

This disclosure is related to the field of interactive video
games, specifically to user-based creating or generating of a
playable interactive video game.

2. Description of the Related Art

The video game boom of the 1980s spawned a generation
of fans who dreamed of designing their own video games.
However, early video game platforms, including the Nin-
tendo® Entertainment System, were primarily developed in
eight-bit processor assembly languages, which were gener-
ally considered difficult to work with, even for experienced
programmers. For young fans, learning to develop an actual
game was effectively impossible, and aspiring young game
designers instead drew their designs on paper, but have never
been able to translate those designs directly into a playable
video game.

Current game editors do not fill this void. Although some
video game products include level editors, they only allow for
software-based editing and do not interpret hand-drawn art.
For example, in a typical game level editor, a graphical user
interface (“GUI”) allows the user to select a terrain brush,
draw terrain using that brush, and place other game elements
onto the terrain, but this is all done on a literal basis. That is,
the elements manipulated by the player in the GUI are game
literals, having a one-to-one correspondence to the resulting
game element in the game level data. However, there is no
way for the user to draw the level outside of a level editor.

SUMMARY

The following is a summary of the invention which should
provide to the reader a basic understanding of some aspects of
the invention. This summary is not intended to identify criti-
cal components of the invention, nor in any way to delineate
the scope of the invention. The sole purpose of this summary
is to present in simplified language some aspects of the inven-
tion as a prelude to the more detailed description presented
below.

Because of these and other problems in the art, described
herein, among other things, is a computer system for creating
a playable video game from a model comprising: an imaging
system creating raw image data indicative of an external
model of a video game level, the external model having a first
pre-defined glyph indicated thereon; a computer-readable
medium having computer-readable program instructions
embodied thereon, the instructions comprising: a preprocess-
ing module generating preprocessed image data based at least
in part on the raw image data; a recognition module iteratively
parsing the preprocessed image data and during an iteration
identifying in the preprocessed image data one or more data
patterns indicative of the first pre-defined glyph and generat-
ing glyph data indicative of the first pre-defined glyph and the

10

15

20

25

30

35

40

45

50

55

60

65

2

location of the first pre-defined glyph on the model; a seman-
tic module iteratively parsing the glyph data and during an
iteration translating the first pre-defined glyph indicated in
the glyph data to a corresponding first video game element
according to a pre-defined glyph language and generating
semantic data indicative of the corresponding first video
game element and the location of the first pre-defined glyph
on the model; an accumulator module generating video game
level data based at least in part on the semantic data, the video
game level data being in a format usable by a video game
engine to render a playable video game and the video game
level data adapted to cause the video game engine to render
the corresponding first video game element at a location in the
playable video game corresponding to the location of the first
pre-defined glyph on the model.

Inan embodiment, the external model comprises a physical
object.

In another embodiment, the physical object is two-dimen-
sional artwork.

In another embodiment, the two-dimensional artwork is
hand-drawn artwork.

In another embodiment, the hand-drawn artwork is drawn
upon video game level design graph paper.

In another embodiment, the external model is a three-
dimensional artwork.

In another embodiment, the video game level is a plat-
former level.

In another embodiment, the image processing system is a
digital camera integrated into a computer, the computer
including the computer-readable medium.

In another embodiment, the computer is a tablet computer.

In another embodiment: the external model further com-
prises a second pre-defined glyph adjacent to the first pre-
defined glyph; the recognition module further identifies in the
preprocessed image data one or more data patterns indicative
of'the second pre-defined glyph and the generated glyph data
is further indicative of the second pre-defined glyph and the
location of the second pre-defined glyph on the external
model; the semantic module further translates the second
pre-defined glyph indicated in the glyph data to a correspond-
ing second video game element according to a pre-defined
glyph language and based at least in part on the identity of the
corresponding first video game element, and the generated
semantic data is further indicative of the corresponding sec-
ond video game element and the location of the second pre-
defined glyph on the external model; the video game level
data is further adapted to cause the video game engine to
render the corresponding second video game element at a
location in the playable video game corresponding to the
location of the second pre-defined glyph on the external
model.

In another embodiment, the preprocessed image data is
generated from the raw image data using at least one image
transformation selected from the group consisting of:
straightening; aligning; orienting; reducing distortions;
reducing image artifacts; sharpening; adjusting color, hue,
shadow, tone, lighting, or contrast, cropping, and combina-
tions of one or more of these.

Also described herein, among other things, is a method for
playing a video game level comprising: providing a glyph
language comprising a plurality of glyphs and, for each one of
the glyphs, a corresponding video game element; providing a
video game rendering program; receiving digital image data
indicative of a external model having a model glyph indicated
thereon, the model glyph being selected from the plurality of
glyphs in the glyph language; locating in the received digital
image data a data pattern indicative of model glyph; deter-

US 9,370,721 B2

3

mining from the received digital image data the location of
the model glyph on the external model; translating the model
glyph to the video game element corresponding to the model
glyph according to the glyph language; generating video
game level data in a format usable by the video game render-
ing program to render the video game level data as an inter-
active playable video game, the video game level data com-
prising the video game element and location data for
rendering the video game element, the location data being
adapted to cause the video game element to be rendered at a
location in the interactive playable video game corresponding
to the location of the model glyph on the external model;
storing the video game level data in a non-transitory com-
puter-readable memory accessible by the video game render-
ing program; rendering the video game level data as an inter-
active playable video game with the video game rendering
program; playing the video game level.

Inan embodiment, the external model comprises a physical
object.

In an embodiment, the physical object is two-dimensional
hand-drawn artwork.

In an embodiment, the two-dimensional hand-drawn art-
work is a hand-drawn video game level.

In an embodiment, the video game element is an interactive
video game element.

In an embodiment, the translating step, the video game
element corresponding to the model glyph is determined at
least in part based upon context data about the model glyph.

In an embodiment, the context data includes the identity of
a second video game element previously translated from a
second model glyph located in the digital image data during
the locating step.

In an embodiment, the context data includes the location of
the second model glyph on the model.

Also described herein, among other things, is a method for
creating a playable video game comprising: receiving digital
image data; locating in the digital image data a data pattern
corresponding to a glyph; translating the glyph to a pre-
defined video game element corresponding to the glyph; gen-
erating an executable video game comprising the predefined
video game element; storing the executable video game on a
non-transitory computer-readable storage medium; creating a
video game.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an embodiment of a user drawing game level
artwork.

FIG. 2 depicts an embodiment of game level artwork.

FIGS. 3-7 depict embodiments of blank game level artwork
graph paper.

FIGS. 8A-8D depict an embodiment of drawing rules and/
or instructions.

FIG. 9 depicts an embodiment of a user imaging game level
artwork using an imaging device.

FIG. 10 depicts an embodiment of a sprite sheet.

FIG. 11 depicts an embodiment of a game level generated
from game level artwork and a sprite sheet.

FIGS. 12-13 depict an embodiment of designing and/or
customizing a generated game level.

FIG. 14 depicts an embodiment of testing a generated game
level.

FIGS. 15-16 depict an embodiment of an application for
viewing, editing, and/or playing a generated game level.

FIG. 17 depicts an embodiment having social networking
features.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 18 is a flow chart an embodiment of a method for
creating a playable video game from art.

FIG. 19 is a schematic diagram of a system for creating a
playable video game from art.

FIG. 20 depicts an embodiment of an iterative semantic
context parser.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

The following detailed description and disclosure illus-
trates by way of example and not by way of limitation. This
description will clearly enable one skilled in the art to make
and use the disclosed systems and methods, and describes
several embodiments, adaptations, variations, alternatives
and uses of the disclosed systems and apparatus. As various
changes could be made in the above constructions without
departing from the scope of the disclosures, it is intended that
all matter contained in the above description or shown in the
accompanying drawings shall be interpreted as illustrative
and not in a limiting sense.

Throughout this disclosure, the term “computer” describes
hardware which generally implements functionality provided
by digital computing technology, particularly computing
functionality associated with microprocessors. The term
“computer” is not intended to be limited to any specific type
of computing device, but it is intended to be inclusive of all
computational devices including, but not limited to: process-
ing devices, microprocessors, personal computers, desktop
computers, laptop computers, workstations, terminals, serv-
ers, clients, portable computers, handheld computers, smart
phones, tablet computers, mobile devices, server farms, hard-
ware appliances, minicomputers, mainframe computers,
video game consoles, handheld video game products, and
wearable computing devices including but not limited to eye-
wear, wristwear, pendants, and clip-on devices.

As used herein, a “computer” is necessarily an abstraction
of the functionality provided by a single computer device
outfitted with the hardware and accessories typical of com-
puters in a particular role. By way of example and not limi-
tation, the term “computer” in reference to a laptop computer
would be understood by one of ordinary skill in the art to
include the functionality provided by pointer-based input
devices, such as a mouse or track pad, whereas the term
“computer” used in reference to an enterprise-class server
would be understood by one of ordinary skill in the art to
include the functionality provided by redundant systems,
such as RAID drives and dual power supplies.

Itis also well known to those of ordinary skill in the art that
the functionality of a single computer may be distributed
across a number of individual machines. This distribution
may be functional, as where specific machines perform spe-
cific tasks; or, balanced, as where each machine is capable of
performing most or all functions of any other machine and is
assigned tasks based on its available resources at a point in
time. Thus, the term “computer” as used herein, can refer to a
single, standalone, self-contained device or to a plurality of
machines working together or independently, including with-
out limitation: a network server farm, “cloud” computing
system, software-as-a-service, or other distributed or collabo-
rative computer networks.

Those of ordinary skill in the art also appreciate that some
devices which are not conventionally thought of as “comput-
ers” nevertheless exhibit the characteristics of a “computer”
in certain contexts. Where such a device is performing the
functions ofa “computer” as described herein, the term “com-
puter” includes such devices to that extent. Devices of this

US 9,370,721 B2

5

type include but are not limited to: network hardware, print
servers, file servers, NAS and SAN, load balancers, and any
other hardware capable of interacting with the systems and
methods described herein in the matter of a conventional
“computer.”

Throughout this disclosure, the term “software” refers to
code objects, program logic, command structures, data struc-
tures and definitions, source code, executable and/or binary
files, machine code, object code, compiled libraries, imple-
mentations, algorithms, libraries, or any instruction or set of
instructions capable of being executed by a computer proces-
sor, or capable of being converted into a form capable of being
executed by a computer processor, including without limita-
tion virtual processors, or by the use of run-time environ-
ments, virtual machines, and/or interpreters. Those of ordi-
nary skill in the art recognize that software can be wired or
embedded into hardware, including without limitation onto a
microchip, and still be considered “software” within the
meaning of this disclosure. For purposes of this disclosure,
software includes without limitation: instructions stored or
storable in RAM, ROM, flash memory BIOS, CMOS, mother
and daughter board circuitry, hardware controllers, USB con-
trollers or hosts, peripheral devices and controllers, video
cards, audio controllers, network cards, Bluetooth® and other
wireless communication devices, virtual memory, storage
devices and associated controllers, firmware, and device driv-
ers. The systems and methods described here are contem-
plated to use computers and computer software typically
stored in a computer- or machine-readable storage medium or
memory.

Throughout this disclosure, terms used herein to describe
or reference media holding software, including without limi-
tation terms such as “media,” “storage media,” and
“memory,” may include or exclude transitory media such as
signals and carrier waves.

Throughout this disclosure, the terms “web,” “web site,”
“web server,” “web client,” and “web browser” refer gener-
ally to computers programmed to communicate over a net-
work using the HyperText Transfer Protocol (“HTTP”), and/
or similar and/or related protocols including but not limited to
HTTP Secure (“HTTPS”) and Secure Hypertext Transfer
Protocol (“SHTP”). A “web server” is a computer receiving
and responding to HTTP requests, and a “web client” is a
computer having a user agent sending and receiving
responses to HT'TP requests. The user agent is generally web
browser software.

Throughout this disclosure, the term “glyph” means a sym-
bol, letter, number, pictogram, structure, gesture, tone, mark,
or element which, in a given use case domain, has or is
indicative of or contributive to semantic meaning. While in
typography and linguistics, the term “glyph” generally means
a written mark, in the present application the term is defined
more broadly to include other indicators of meaning, as
described herein. For example, a “glyph” as used herein may
comprise a three-dimensional symbol, including but not nec-
essarily limited to tactile languages such as Braille, blocks,
poker chips, and chess pieces. A glyph may also be four-
dimensional, including but not necessarily limited to motion-
based glyphs which acquire semantic meaning over time,
such as sign languages and gestures. A glyph may also be
non-visual in nature, such as auditory glyphs like musical
notes, tones, animal noises, or spoken language. A particular
glyph may have different semantic meanings in different use
case domains.

Throughout this disclosure, the term “use case domain”
means a particular field or application which may have or use
conventional, standard, predefined or otherwise generally

20

30

35

40

45

6

known symbols, glyphs, pictograms, gestures, tones, sounds,
or structures to indicate elements used or known in the par-
ticular field or application. For example, it is common in
network design to use a cloud to symbolize a network. Also by
way of example and not limitation, it is common in electrical
or circuit diagrams to indicate the presence of a resistor using
a pictogram comprising a jagged line.

The terms “level” and/or “video game level” are a term of
art hailing from the golden age of gaming, when video games
generally comprised a sequence of playable levels with
defined beginnings and endings. This includes, but is not
limited to, games like Pac-Man™, Donkey Kong™, and the
well-known Nintendo® Entertainment System product Super
Mario Brothers™ which was noted for its level notation (e.g.,
1-1, 1-2, 1-3, 1-4, 2-1, etc.). One of ordinary skill in the art
will understand that the term “level” has become a term of art
referring to a defined playable space within a particular video
game, and the particular structure and form of such space
necessarily varies from genre to genre. By way of example
and not limitation, a “level” in a side scroller-style like Super
Mario Brothers™ generally comprises a beginning point and
goal and, when the player reaches or achieves the goal, the
player has “finished” or “beaten” the level and begins play on
an alternative level. For other genres, such as a first person
shooter, a “game level” is generally a map defining a limited
three-dimensional space in which game play occurs until a
condition is met, such as the expiration of time, defeating a
certain number of opponents, or locating an “exit.”” In still
other genres, a “level” may lack clearly defined beginning and
end points. By way of example and not limitation, in an online
role-playing game, players generally move smoothly from
one “map” to another without having to achieve any particular
condition, and a “game level” in such an embodiment may
comprise data indicative of adjacent “game levels” on which
the player can play by departing the current game level. In still
further embodiments, a “game level” may comprise other
data or take other forms particular to the genre. The concept of
a “game level” and the meaning of that term will be under-
stood by one of ordinary skill in the art as the term applies to
a particular video game genre.

A “video game element” is an element of a playable video
game which contributes to the user experience, including but
not necessarily limited to: world design, system design, con-
tent design, event design, level design, audio design, graphic
design, model design, user interface design, narrative design,
and multiplayer design. Video game elements may comprise
any audiovisual element of the game and generally comprise
interactive elements of the game, such as the setting and
geography of the game, and the objects or features in the game
with which the player can interact.

Certain video game elements are defined functionally with
respectto the player avatar in the game. The term “avatar” will
be understood by one of ordinary skill in the art to refer to the
“character” or other representation of the player which is
manipulated by the player while playing the game. The func-
tional definition of interactive video game elements will vary
from genre and genre and game to game. By way of example
and not limitation, side scrollers such as Super Mario Broth-
ers™ typically include interactive game elements which
injure, damage, or heal the player upon collision detection, or
which provide for “loot” to the player upon collision. These
interactive game elements may have further characteristics,
such as that they are subject to gravity physics (or not), they
are stationary (or not), or they only cause injury, damage, or
healing if collision is detected from certain angles (e.g., dor-
sal collision does not cause damage, but lateral collision
does). While interactive video game elements are defined

US 9,370,721 B2

7

functionally, they are typically represented visually as a game
literal. For example, an element causing damage upon colli-
sion detection might have a game literal such as fire, spikes,
thorns, or an enemy. Interactive game elements have a func-
tional relationship to the player avatar, whereas non-interac-
tive game elements, such as the score counter or game music,
generally are experienced or used by the player but not
directly used for interaction by the avatar.

A “video game literal” or “game literal” as used herein
generally references to the aesthetic appearance of a video
game element. More than a matter of merely “skinning” a
pre-defined game model, selection of a game literal for a
game element is effectively arbitrary, as the game literal
defines the narrative or associative meaning of the game
element, as opposed to the functional meaning. The choice of
game literal may generally bear some relationship to the
functional game element as a matter of design choice and
information efficiency, it need not. For example, for a game
element such as damage upon collision detect, the game
literal will generally be something that a typical user will
associate with causing injury when touched, such as a very
sharp object (spikes) or a very hot object (fire). This is so that
the game can quickly and efficiently communicate to the
player information about how the avatar will interact with the
game environment, without the player having to read lengthy
instructions or tutorial lessons.

It should be understood that while terms such as “level
data” and “video game level” are defined and used herein with
respect to video game use case domains, other use case
domains are specifically contemplated and alternative for-
mats and engines/drivers/renderers may be used for other use
case domains. By way of example and not limitation, in the
use case domain of an electrical schematic diagram, the out-
put format may not be video game level data, but rather a
CAD file used or usable by a CAD engine, driver, or renderer
as an input file. Generally speaking, the accumulator pro-
duces data in a format usable by productivity or business
software, or used or usable directly by an end-user, for a
particular use case domain.

At a high level, the systems and methods described herein
comprise an image processing system, a translation system,
and a generation system, though additional component sys-
tems or subsystems may be included. One or more these
components may be implemented as software instructions on
a computer system. Generally, a user creates a model having
glyphs selected from a pre-defined glyph language, the image
capturing system creates a digital image of the model, the
translation system converts the glyph in the digital image into
a game element (generally an interactive game element), and
the generation system assembles the translated glyphs into a
playable video game or video game level. These and other
components are discussed in further detail herein.

FIG. 18 depicts an embodiment of the systems and meth-
ods described herein. In the depicted embodiment, a user
drafts, forms, creates, or generates a real-world model (1800),
such as the models (1917) depicted in FIG. 19. The model
(1917) generally includes one or more glyphs (1919). In the
typical embodiment, the model (1917) is a two-dimensional
hand-drawn video game level, such as that depicted in FIGS.
1 and 2. Also in the typical embodiment, the model (1917) is
drawn on draft/graph paper, such as that depicted in FIGS.
3-7. Although drawings are generally contemplated, the
model (1917) may comprise any work having one or more
glyphs (1919) and which can be imaged. By way of example
and not limitation, the model (1917) may comprise a three-
dimensional structure such as a sculpture or model made from
blocks. Alternatively, the model (1917) may comprise a two-

10

20

25

30

35

40

45

50

55

60

65

8

dimensional medium used to represent a three-dimensional
object, such an isometric drawing and/or a set of orthographic
drawings. In a still further embodiment, the model may com-
prise a four-dimensional object which acquires meaning over
time, such as sign language or a gesture. For sake of simplic-
ity and clarity, the term “model” shall be used herein to refer
to all user-generated works for use with the systems and
methods, regardless of shape, dimension, or medium.

Users generally create the model at least in part according
to a glyph language. A glyph language generally comprises a
set of glyphs and an associated set of rules or instructions
indicating how patterns, symbols, glyphs, marks, shapes, or
other elements of the model correspond to or are associated
with game elements in various contexts. Examples include,
but are not limited to terrain, sky, obstacles, levels, heroes,
terrain, hazard pits, monkey bars, moving platforms, spikes,
barriers, portals, powerups, floors, ceiling, boundaries, and
the like. One embodiment of such rules or instructions is
depicted in FIG. 8.

Generally, the game level is drawn on graph paper divided
into a plurality of grids or sectors, with each glyph being
generally drawn on one or more sectors and conforming to the
provided grid lines. Exemplary embodiments of such graph
paper are depicted in FIGS. 3-7. The use of such paper
improves the performance and accuracy of other modules
described herein by providing identifiably indications of the
boundary lines between glyphs. This improves the perfor-
mance of parsing modules in identify glyphs by allowing the
model to be segmented into a plurality of locations on the
model (referred to herein as “sectors”) which present a
smaller amount of data to analyze and process. Other embodi-
ments using alternative media may use similar techniques in
different embodiments to provide cues to the processing algo-
rithms of where glyphs may begin and end.

This sectoring technique may be used in an embodiment to
establish a one-to-one correlation between a point on the
model and a location on the screen. That is, the systems and
method may use sectoring to locating on the computing
device display on which the game is ultimately played a
display location for a sector corresponding to its respective,
relative position on the model. This may or may not also be
the corresponding position in the video game produced using
this method, depending on factors such as the dimensions of
the game space.

The depicted embodiment of FIG. 18 further comprises
capturing an image of the model (1802), generally using an
image processing system. In an embodiment, the image pro-
cessing system is a digital imaging device, such as the device
(1903) depicted in FIG. 19. The image processing system
generally generates or creates raw image data in a computer-
readable format, the data being indicative or representative of
the model. The raw image data may be stored in a memory,
including a non-transitory computer-readable storage
medium. Such data is generally referred to herein as the raw
image data.

Typically, the image processing system includes a digital
camera, which may also be integrated into or otherwise
attached to, attachable to, able to communicate with, or com-
municating with a computer system, such as a tablet PC or
mobile phone. An embodiment of such a system is depicted in
FIG. 9. However, in alternative embodiments, the image pro-
cessing system may comprise a different imaging device. By
way of example and not limitation, the image processing
system may comprise a three dimensional scanner or a medi-
cal imaging device, such as CT, PET, or MRI device. In
another alternative embodiment, the image processing sys-
tem may comprise a motion sensing and/or capturing device,

US 9,370,721 B2

9

including but not necessarily limited to the Microsoft®
Kinect™ sensor. In a still further alternative embodiment, the
image processing system may comprise, or be comprised by,
a wearable device, including but not necessarily limited to:
eyewear, wristwear, neckwear, a device attached or attachable
to clothing or accessories, or Google® Glass.

Raw image data is generally provided to computer soft-
ware which identifies in the image the data glyphs placed on
the original model by the user and translates the identified
glyphs into game elements. The raw image data (1804) may
first be prepared for this processing, such as by the prepro-
cessing module (1907) depicted in FIG. 19. The depicted
preprocessing module performs various alterations, modifi-
cations, and transformations to raw image data to standardize,
normalize, and/or otherwise prepare the image data for pro-
cessing by downstream modules. These transformations
include, but are not necessarily limited to: straightening;
aligning; orienting; reducing distortions, lens flares, and/or
other image artifacts; sharpening; altering image characteris-
tics including but not limited to color, hue, shadow, tone,
lighting, and/or contrast; cropping; finding, identifying, and/
or using boundary markers or position indicators. These pre-
processing steps may improve overall glyph recognition per-
formance and reduce development time by providing image
data in a standard format. For example, a recognition module
(described elsewhere herein) may achieve better performance
if the raw image data has a particular orientation.

The preprocessor (1907) generally generates altered image
data, generally referred to herein as preprocessed image data.
This data may replace or overwrite raw image data, or may be
stored separately from raw image data. Preprocessed image
data may be stored in a memory or non-transitory computer-
readable storage and may be transmitted or provided to, or
received from, a module or computer. In an embodiment, a
plurality of preprocessed image data sets may be generated
for a single model.

In an embodiment, geometric criteria are used to identify
boundary markers and determine whether the imaging system
is properly centered on the model or artwork. This may be
done by identifying one or more candidate boundary markers
and evaluating each such candidate boundary marker, par-
ticularly with respect to the geometric relationship between
or among a plurality of such candidate boundary markers. A
plurality of combinations of boundary markers may be con-
sidered, sorted, or otherwise analyzed to identify a best match
for an anticipated or predefined geometric arrangement of
boundary markers. By way of example and not limitation, the
criteria may include whether a plurality of candidate bound-
ary markers are generally collinear, or whether a particular set
of generally collinear boundary markers are generally per-
pendicular to another set of generally collinear boundary
markers. A still further criteria may be whether a plurality of
boundary markers are generally equidistant from one another
or from a reference boundary marker.

Preprocessed image data is generally processed by a rec-
ognizer module (1806), such as the recognizer module (1909)
depicted in FIG. 19. The recognizer module (1909) generally
parses or processes the preprocessed image to identify, locate,
or recognize symbols, glyphs, marks, shapes, or other ele-
ments of the model corresponding to a game element. This
may be done by finding data patterns in the preprocessing
image data corresponding to a particular glyph (1919), sug-
gesting that the corresponding glyph (1919) appears on the
original model (1917). These data patterns may be pre-
defined, preprogrammed, hard-coded, or otherwise supplied
to the recognizer module (1909). The data patterns generally

10

15

20

25

30

35

40

45

50

55

60

65

10
comprise indications of a glyph (1919) and/or other elements
or symbols in the model (1917).

The recognizer (1909) generally generates or creates a
dataset comprising data indicative of one or more glyphs
(1919), or other elements of the model (1917), recognized in
the preprocessed image data. This dataset is generally
referred to herein as glyph data. Glyph data may be stored in
a memory or non-transitory computer-readable storage and/
or may be transmitted to or received from a module or com-
puter. In an embodiment, this dataset may further comprise
other data indicative of characteristics of an identified glyph
(1919), including but not necessarily limited to: the color of
the glyph (1919); the identification of glyphs (1919) adjacent
to the glyph (1919); the position or location of the glyph
(1919) in the model (1917).

In an embodiment, the recognizer (190) a segmenting pro-
cess to process preprocessed image data on a sector-by-sector
basis. For example, where the model is hand-draw artwork on
graph paper having grid lines, the grid lines may be used to
segment the model into a plurality of grid locations, or “sec-
tors,” with each grid location potentially having a glyph
drawn thereon. Using the preprocessing features described
herein, the graph paper may be oriented properly for such grid
lines to be algorithmically detected by software, increasing
the speed and accuracy of other modules, such as the recog-
nition module, in finding and identifying glyphs.

In an embodiment, the recognizer (1909) is implemented
iteratively, such as through sequential execution of a plurality
of support vector machine classifiers for each glyph in the
glyph language. Each such classifier may determine whether
the preprocessed image data, or a portion thereof (such as a
sector), matches a particular glyph or not. If a particular glyph
is recognized, the classification process terminates as to that
glyph, and/or that portion of the preprocessed image data. If
the glyph is not recognized, the next classifier in the plurality
of classifiers may be executed to search for another particular
glyph. A classifier may determine whether preprocessed
image data matches a particular glyph by, for example, ana-
lyzing whether preprocessed image data includes a data pat-
tern identical, similar, indicative of, or related to data patterns
associated with the particular glyph the classifier is pro-
grammed to recognize. The recognizer may also store in the
glyph data the corresponding sector in which an identified
glyph is located.

In an embodiment, glyph data is processed by a semantic
module, such as the semantic module (1911) depicted in FIG.
19. The semantic module (1911) generally determines the
correct game element to translate each glyph into, and gen-
erates semantic data containing this game element. Generally,
the glyph is translated into a functional meaning—that is, to
an interactive game element, and not necessarily a game
literal. The translation is generally based upon the glyph
language, the glyph context, and a use case domain. It is
important to understand certain distinctions between the
semantic module (1911) and the recognizer module (1909).
Whereas the recognizer (1909) identifies which glyphs are in
the model and where they are found, the semantic module
(1911) interprets what the glyphs mean in context. For
example, a “blank™ glyph—that is, a sector with no markings
or symbols—may mean “sky” in one context and may mean
“ground” in another, as provided by the glyph language. The
context of a glyph is generally the glyphs directly adjacent to
it, but may also include, without limitation: the color of the
glyph (1919); the identification of glyphs (1919) adjacent to
the glyph; the position or location of the glyph (1919) on the

US 9,370,721 B2

11

model (1917); glyph or context borders, glyphs indirectly
adjacent to the glyph; and/or other context or glyph (1919)
characteristics.

The semantic module (1911) generally generates or creates
semantic data based at least in part on glyph data. Such
semantic data generally comprises data indicative of one or
more game elements, such elements generally being interac-
tive game elements having functional meaning, translated
from glyph data. The game elements are generally associated
with a glyph (1919) in the glyph language.

In an embodiment, the semantic module performs multiple
passes through the glyph data. This is because some glyphs
require little or no context to be translated to a game element,
but the corresponding functional meaning of other glyphs
may not be determined without additional context, such as by
translating adjacent glyphs. In a pass through the data, addi-
tional glyphs are translated, or attempted to be translated, to
game elements. As successive passes through the glyph data
provide incrementally more context, more and more glyphs
can be translated to game elements, until all glyphs have been
fully translated. The process of translating a glyph is referred
to herein as “resolving” the glyph. Some glyphs may be only
partially resolved during a pass, and then fully resolved in a
subsequent pass.

This may be better understood with reference to an illus-
trative example. Suppose the glyph language defines a rect-
angle glyph as having the functional meaning of a static
traversable. This function may correspond to an effectively
limitless number of game literals, including but not limited to:
ground, a roof; a floor, a platform, a tree branch, a ship deck,
atable top, or a force field. However, if the rectangle glyph is
adjacent to an arrow glyph, the glyph language provides that
the functional meaning changes from static traversable to a
movable traversable. Thus, the functional meaning of the
rectangle glyph is not fully resolved until the adjacent arrow
glyph is resolved. Likewise, the functional meaning of the
arrow glyph cannot be fully determined until the rectangle
glyph is at least partially resolved. Thus, multiple passes are
needed—Afirst to partially resolve the rectangle glyph into a
static traversable, second to resolve the arrow glyph, and third
to fully resolve the rectangle glyph. It should be noted that, in
an embodiment, certain glyph resolutions can be combined in
a single pass. This may be done for, among other things,
processing or development efficiency. In this example,
resolving the arrow glyph and resolving the movable travers-
able could be handled in a single pass. The particular com-
position of the each pass will necessarily vary with the par-
ticular glyph language, and with the programming techniques
used to identify glyphs. For a given glyph language, many
different algorithmic approaches are possible to resolve all
glyphs. This is one illustrative example and should be under-
stood as limiting.

In an embodiment, the semantic module may create and/or
maintain a data structure for tracking and updating glyph
resolution. By way of example and not limitation, this data
structure may comprise a context table or context graph hav-
ing context data. A context graph may comprise a one or more
datasets corresponding to a sector and each such dataset may
be used to track and update context data and/or glyph resolu-
tion data for the corresponding sector. This approach is par-
ticularly useful for glyphs which resolve to functions that
have few or no data analogs in the resulting video game level
data (discussed elsewhere herein), such as empty or open
space, as it can reduce the memory footprint and increase
processing efficiency. By way of example and not limitation,
a semantic module pass may indicate that a given blank glyph
has a “sky” function (passable/no collision detection) and

10

15

20

25

30

35

40

45

50

55

60

65

12

update the context graph data corresponding to that given
sector to have a “sky” context.

This also may be better understood with reference to an
illustrative example. In an embodiment, the glyph language
defines the “blank™ glyph as having a different meaning in
different contexts. For example, a blank glyph may have a
“sky” function (passable/no collision detection) in one con-
text and a “ground” function (impassable/collision detection)
in another (e.g., the blank glyph is enclosed in a polygon
glyph defining a static traversable). To determine whether a
given blank glyph is “sky” or “ground,” the semantic module
may complete one or more passes through the glyph data to
develop sufficient context data to determine which functional
meaning to apply to each blank glyph. An example of this
technique is depicted in the flow chart of FIG. 20.

Inthe depicted flow chart, a context graph is created (2000)
in memory comprising data corresponding to sectors. The
context for each sector is initially defaulted to an “unknown”
value (2002), such as a program constant. In the depicted
embodiment, the system determines whether any sectors
remain unknown (2004) at the beginning of each iteration,
though this step may be carried out during or after each
iteration in an alternative embodiment. The choice of when to
perform this check is an implementation detail generally left
to a programmer’s design discretion. If no sectors remain
unknown, the context parsing may terminate (2006). How-
ever, if sectors remain unknown, additional iterations may
proceed to examine additional unknown contexts or glyphs
and resolve them (2008).

Continuing the illustrative example, during early passes,
glyphs whose functional meaning is not highly context-de-
pendent may be resolved and functional meanings assigned.
Similarly, glyphs which provide context meaning (whether or
not they can be resolved during the pass) may be used to
determine context meaning for themselves and/or for adja-
cent glyphs or sectors. By way of example and not limitation,
if a “+” glyph means a static game object removed upon
collision (e.g., a coin, a power-up a balloon, ammunition), the
functional rules for such an object imply that it belongs in a
“sky” context (i.e., passable/no collision detection). This is
because the functional meaning of the glyph is defined by
contact with the avatar, and this function would be unusable in
a “ground” context (impassable/collision detection) because
the avatar could not reach it.

Continuing the illustrative example, when the “+” glyph is
found in the glyph data, its corresponding function can be
determined (2010) and its associated functional meaning can
be applied (2012), such as by referring to the glyph language
and/or use case domain. The resulting game element is then
added to the semantic data (2012). Likewise, this glyph pro-
vides context (2014) to adjacent “blank™ glyphs (e.g., also
“sky” context) and the context graph for such adjacent glyphs
can be updated (2016) to reflect the context discovered during
this pass. This in turn allows additional blank glyphs, adjacent
to the blank glyphs adjacent to the “+” glyph, to be assigned
functional meaning—again, “sky.” A flood-fill algorithm may
be used to repeat this process and locate all such “blank™
glyph locations in the context graph and indicate “sky” con-
text for such glyphs in the context graph. In an embodiment,
the “flood fill” algorithm may be performed in the same pass
as the identification of the “+” glyph, or in one or more
subsequent passes.

Continuing the illustrative example, some glyphs may have
context-sensitive functional meanings, meaning at least some
context is resolved before the glyph is resolved. By way of
example and not limitation, an “X” glyph may have the func-
tional meaning in the glyph language of avatar damage upon

US 9,370,721 B2

13

collision detection in one context (e.g., a game literal of lava,
spikes, or fire) but of suspended avatar physics in another
(e.g., monkey bars). Thus, when an “X” glyph is found, adja-
cent glyphs are evaluated to determine context and identify
the corresponding functional meaning for a particular “X”
glyph. If the adjacent glyphs have not yet been resolved, the
functional meaning for “X” may not yet be determinable
(2010), and the glyph is not yet assigned functional meaning.
However, the glyph may still provide context information
(2014) whether or not its functional meaning is determinable
during the pass.

Continuing the illustrative example, contexts may also be
resolved by algorithmically locating the borders of a given
context and assigning glyphs on the opposing side of the
border with an opposing context. By way of example and not
limitation, if a blank glyph is known to have a “sky” context
and the borders of the “sky” context are defined as a closed
polygon, the blank glyphs within the enclosed polygon on the
opposing side of the border of the “sky” context are neces-
sarily “ground” context and can be translated (2016) as such,
and the context graph updated accordingly.

Continuing the illustrative example, still other glyphs may
require a completed or nearly-completed context graph to be
resolved. By way of example and not limitation, an arrow
glyph such as “>" might apply motion physics to adjacent
impassable/collision detection game elements to form a mov-
ing platform. This may, in an embodiment, require otherwise
complete context data. As such, glyphs corresponding to
directional movement and/or distance may be resolved in the
latter passes after most, or all, of the context graph is complete
and few or no “unknown” locations remain. By way of
example and not limitation, where the object is a moving land
mass such as a platform, the moving platform may be iden-
tified algorithmically and direction and distance determined
from the motion physics glyph (or glyphs) applicable to that
platform as provided in the glyph language and/or use case
domain. Again, a context graph (2016) and/or semantic data
(2012) may be updated with the resulting context data and/or
game clement data.

In an embodiment, semantic data is processed by an accu-
mulator module, such as the accumulator module (1913)
depicted in FIG. 19. The accumulator module (1913) gener-
ally comprises programming which processes semantic data
to produces video game level data based at least in part upon
semantic data. Generally, the accumulator (1913) produces
video game level data based upon the functional meaning
applied to one or more glyphs (1919) and/or characteristics
thereof identified in the preprocessed image data. In an
embodiment, video game level data is generated in a format
used or usable by a driver, engine, or renderer as a playable
video game level. In an embodiment, the engine, driver, or
renderer using said video game level data is Unity™. In an
alternative embodiment, the engine or driver may be other
programs such as, but not limited to, is GameMaker™ or
Game Salad™. In an embodiment, video game level data is
stored on computer-readable non-transitory media as a logi-
cal or physical file or stored in memory and may be transmit-
ted to or received from a module or computer.

For any given use case domain, the recognizer and/or
semantic modules may be preprogrammed or otherwise sup-
plied with the glyph language. The language may be gener-
ally known or associated in the use case domain with certain
meanings, or may be developed for a particular or specific use
case domain. By way of example and not limitation, a use-
case domain may be or comprise: video games; a platform
video game; a racing video game; an isometric adventure
video game; storyboarding; music and/or music notation;

10

15

20

25

30

35

40

45

50

55

60

65

14

network design; electrical design; Braille; web design; archi-
tecture; software design; modeling; model trains and/or logis-
tics; electric or circuit design; medical and/or biological;
presentations; welding; HVAC; 3D printing; sports and play
design; automotive; 3D models of blocks, including but not
limited to interlocking blocks such as Legos™ or Duplos™;
object recognition; mapping; geocaching; construction;
drafting; interior design; exterior design; landscape design;
gardening; occupational therapy; physical therapy; educa-
tional therapy; learning tools; fashion design; manufacturing;
product design; industrial engineering; board game design;
table top gaming design; card game design; jewelry design;
surveying; stratification; cores; live tracing; data entry; qual-
ity grading, including but not limited to collectables, baseball
cards, comic books, and antiques; scrapbooking; mathemat-
ics; physical training; notes and calendars; OCR knowledge
search; origami and/or balloon animals; medical imaging;
and/or other such domains.

In an alternative embodiment, specific use case domains
may be defined or provided which define a glyph language for
that domain and the associated functional meaning of such
glyphs in such language. As such, the meaning of a glyph may
vary between use case domains, and even between related or
similar use case domains. By way of example and not limi-
tation, a use case domain may be a video game genre, such as
a platformer in which the glyph “X” has the semantic mean-
ing of a surface capable of supporting a sprite, such as but not
limited to an avatar. However, in an alternative use case
domain, such as an isometric realtime roleplaying game, the
glyph “X” may have the semantic meaning of impassable
terrain. In a still further use case domain, such as landscape
design, the glyph “X” may indicate an existing structure to be
demolished and removed.

In an embodiment, the video game level data may also be
generated at least in part using a sprite sheet, an example of
which is depicted in FIG. 10 this disclosure. An embodiment
of'alevel generated from artwork and a sprite sheet is depicted
in FIG. 11.

In an embodiment, the user may view, edit, and revise the
video game level data, including but not limited to by drawing
or re-drawing the level changing images, sounds, and music
included in the generated game level. This may be done,
among other reasons, to correct rendering or translation
errors. Generally, the user performs these functions using a
computer application, an embodiment of which is depicted in
FIGS. 12 and 13. In an embodiment, the user may test the
generated video game level data in an application, an embodi-
ment of which is depicted in FIG. 14. The user may also view,
play, or edit the generated level in an application, an embodi-
ment of which is depicted in FIGS. 15 and 16. In an embodi-
ment, a community feature facilitates level sharing and com-
petition, including but not limited to through leaderboards,
statistics, and integration into existing or future social net-
working platforms, and/or integrating social networking into
the systems and methods. An embodiment of such an appli-
cation is depicted in FIG. 17.

Also described herein is a system for creating a playable
video game from a real-world model comprising, such as the
system depicted in FIG. 19. In the depicted system, the sys-
tem comprises a computer (1901) comprising software
(1905) comprising one or more modules, a non-transitory
computer-readable storage media (1921), and an image pro-
cessing system (1903). In the depicted embodiment, the mod-
ules comprise a preprocessing module (1907), a recognizer
module (1909), a semantic module (1911), and an accumu-
lation module (1913). The depicted image processing system
(1903) is a peripheral digital camera but in an embodiment,

US 9,370,721 B2

15

and as described elsewhere herein, the image processing sys-
tem (1903) may be a different imaging system, and may be
integrated into a computer. The image processing system
(1903) may alternatively be, among other things, a peripheral
or third-party device, including but not necessarily limited to
a three-dimensional scanner which communicates with the
computer (1901) and transmits or causes to be transmitted
captured image data to the computer (1901). In a further
embodiment, the image processing system (1903) is as the
Microsoft Kinect™.

Inan embodiment of the systems and/or methods described
herein, the systems and/or methods further comprise display-
ing, conveying, or indicating to a user an image or represen-
tation of the based at least in part on preprocessed image data
and/or glyph data. The systems and/or methods may further
comprise editing or modifying preprocessed image data,
glyph data, and/or semantic data based at least in part on user
input provided to a computer system. In an embodiment,
edited or modified preprocessed image data, glyph data, and/
or semantic data may be produced or provided to a user in a
non-digital format, including but not necessarily limited to by
rendering or generating a recreation of the model. By way of
example and not limitation, the systems or methods may
display or render, or cause to be displayed or rendered, to the
user a digital representation or impression of the model. The
user may use editing software to modify the data, and/or the
user may print or otherwise generate or create a modified hard
copy of the model. For example, if an error occurs where a
glyph is incorrectly recognized, the user may correct the
glyph in the system, such as by changing the identity of the
detected glyph, and then reprint the model based on the modi-
fied glyph data. Display and editing may be performed
before, between, during, or after any method step or steps
described herein.

In an embodiment, the model is not necessarily created by
a user, but may be a pre-existing model. By way of example
and not limitation, the model may be a terrain or satellite
image of a geographic space, or a floor plan, and the glyphs
may comprise geographic features. A user could thus use the
systems and methods to create, for example, level data rep-
resentative or indicative ofthe geography, or other features, of
a real-world location, such as a neighborhood, building, or
skyline.

In an embodiment, the systems and methods further com-
prise “splicing,” wherein a model is segmented into a plural-
ity of grids, sections, sectors, or markers, and each segment is
processed separately and/or independently. Such segmenta-
tion may be done on a glyph-by-glyph basis, or may use larger
segments comprising a plurality of glyphs. In such an
embodiment, multiple datasets indicative of at least part of
said model and/or glyphs thereon may be generated and/or
processed together, separately, and/or independently or inter-
dependently. In an alternative embodiment, splicing com-
prises combining data indicative of a plurality of models
and/or glyphs into a single dataset indicative of a model or a
unified model. This may be done in an embodiment by, for
example, arranging or sequencing a plurality of models in a
preferred or defined layout or manner and imaging the plu-
rality of models as a single model. By way of example and not
limitation, in an implementation for a top-down adventure
game, such as a game in the spirit of The Legend of Zelda™,
multiple models may be drawn and imaged to represent each
room of a dungeon or each section of the overworld. These
models may be linked or joined in the video game level data
into a cohesive video game level or video game world, such as
by examining glyphs on the models indicating the relation-

10

15

20

25

30

35

40

45

50

55

60

65

16

ship between different models, or using computerized editing
tools to arrange the multiple models appropriately to generate
the desired world.

By way of example and not limitation, a user may draft
multiple game level models, image and process each model as
provided herein, edit and refine each processed image, such as
to correct errors and make modifications, reprint the modified
model, arrange the printed models in proper sequence, and
then re-imagine the sequenced levels as a single model.

While this invention has been disclosed in connection with
certain preferred embodiments, this should not be taken as a
limitation to all of the provided details. Modifications and
variations of the described embodiments may be made with-
out departing from the spirit and scope of this invention, and
other embodiments should be understood to be encompassed
in the present disclosure as would be understood by those of
ordinary skill in the art.

The invention claimed is:

1. A computer-implemented method for playing a video
game level in a playable video game comprising:

providing a glyph language comprising a plurality of

glyphs, each one of said glyphs being a symbolic repre-
sentation of a functional video game element in said
playable video game defined functionally with respect to
interaction of a player with such functional video game
element in said playable video game;

providing a video game rendering program;

capturing a digital image of an external model having a

model glyph indicated thereon, said external model
being a discrete physical object and said model glyph
being selected from said plurality of glyphs in said glyph
language;

locating in said captured digital image data a data pattern

indicative of said model glyph;
determining from said captured digital image data the loca-
tion of said model glyph on said external model;

translating said model glyph to said functional video game
element corresponding to said model glyph according to
said glyph language;

generating video game level data in a format usable by said

video game rendering program to render said video
game level data as said playable video game, said video
game level data comprising said functional video game
element and location data for implementing said func-
tional video game element, said location data being
adapted to cause said functional video game element to
be implemented at a location in said playable video
game corresponding to said location of said model glyph
on said external model;

storing said video game level data in a non-transitory com-

puter-readable memory accessible by said video game
rendering program;

rendering said video game level data as said playable video

game with said video game rendering program;
playing said video game level.

2. The method of claim 1, wherein said physical object is
two-dimensional hand-drawn artwork.

3. The method of claim 2, wherein said two-dimensional
hand-drawn artwork is a hand-drawn video game level.

4. The method of claim 1, wherein said functional video
game element is an interactive video game element.

5. The method of claim 1, wherein in said translating step,
said functional video game element corresponding to said
model glyph is determined at least in part based upon context
data about said model glyph.

6. The method of claim 5, wherein said context data
includes the identity of a second functional video game ele-

US 9,370,721 B2

17

ment previously translated from a second model glyph
located in said digital image data during said locating step.
7. The method of claim 5, wherein said context data
includes the location of said second model glyph on said
model.
8. A computer-implemented method for creating a playable
video game comprising:
capturing digital image data indicative of an external
model having a model glyph indicated thereon, said
external model being a discrete physical object and said
model glyph being selected from said plurality of glyphs
in said glyph language;
receiving said digital image data;
locating in said digital image data a data pattern corre-
sponding to a glyph in said glyph language, said glyph
being a symbolic representation of a predefined func-
tional video game element defined functionally with
respect to interaction of a player of said playable video
game with such functional video game element in said
playable video game;
translating said glyph to said predefined functional video
game element corresponding to said glyph according to
said glyph language;
generating an executable playable video game comprising
said predefined functional video game element imple-
mented at a location in said playable video game corre-
sponding to said location of said model glyph on said
external model.
9. A computer system for creating a playable video game
from a model comprising:
an imaging system capturing an image of art external
model of a video game level for said playable video
game, said external model being a discrete physical
objecthaving a first pre-defined glyph indicated thereon,
said first pre-defined glyph being a symbolic represen-
tation of a first functional video game element in said
playable video game, and said first functional video
game element being defined functionally with respect to
interaction of a player of said playable video game with
such first functional video game element in said playable
video game; and
a non-transitory computer-readable medium having com-
puter-readable program instructions embodied thereon,
said instructions comprising:

a preprocessing module generating preprocessed image
data based at least in part on said captured image of
said external model;

a recognition module iteratively parsing said prepro-
cessed image data and during an iteration identifying
in said preprocessed image data one or more data
patterns indicative of said first pre-defined glyph and
generating glyph data indicative of said first pre-de-
fined glyph and the location of said first pre-defined
glyph on said external model;

a semantic module iteratively parsing said glyph data
and during an iteration translating said first pre-de-
fined glyph indicated in said glyph data to said first
functional video game element according to a pre-
defined glyph language and generating semantic data
indicative of said first functional video game element
and the location of said first pre-defined glyph on said
external model, said translating being based at least in
part on one or more of:
semantic data previously generated for an adjacent

glyph; and

10

15

20

25

30

35

40

45

50

55

60

18

a determination of whether said any non-blank glyphs
are adjacent to said location of said first pre-defined
glyph in said glyph data; and

an accumulator module generating video game level
data based at least in part on said semantic data, said
video game level data being in a format usable by a
video game engine to render said playable video game
and said video game level data adapted to cause said
video game engine to implement said first functional
video game element at a location in said playable
video game corresponding to said location of said first
pre-defined glyph on said model.
10. The system of claim 9, wherein said external model is
two-dimensional artwork.
11. The system of claim 10, wherein said two-dimensional
artwork is hand-drawn artwork.
12. The system of claim 11, wherein said hand-drawn
artwork is drawn upon video game level design graph paper.
13. The system of claim 9, wherein said external model is
a three-dimensional artwork.
14. The system of claim 9, wherein said video game level is
a platformer level.
15. The system of claim 9, wherein said image processing
system is a digital camera integrated into a computer, said
computer including said computer-readable medium.
16. The system of claim 15, wherein said computer is a
tablet computer.
17. The system of claim 9, wherein:
said external model further comprises a second pre-defined
glyph adjacent to said first pre-defined glyph, said sec-
ond pre-defined glyph being a symbolic representation
of a second functional video game element in said play-
able video game, and said second functional video game
element being defined functionally with respect to inter-
action of a player of said video game with such second
functional video game element in said playable video
game;
said recognition module further identifies in said prepro-
cessed image data one or more data patterns indicative of
said second pre-defined glyph and said generated glyph
data is further indicative of said second pre-defined
glyph and the location of said second pre-defined glyph
on said external model;
said semantic module further translates said second pre-
defined glyph indicated in said glyph data to said second
functional video game element according to said pre-
defined glyph language and based at least in part on the
identity of said first functional video game element, and
said generated semantic data is further indicative of said
second functional video game element and the location
of said second pre-defined glyph on said external model;

said video game level data is further adapted to cause said
video game engine to implement said second functional
video game element at a location in said playable video
game corresponding to said location of said second pre-
defined glyph on said external model.

18. The system of claim 9, wherein said preprocessed
image data is generated from said captured image using at
least one image transformation selected from the group con-
sisting of: straightening; aligning; orienting; reducing distor-
tions; reducing image artifacts; sharpening; adjusting color,
hue, shadow, tone, lighting, or contrast, cropping, and com-
binations of one or more of these.

#* #* #* #* #*

